Structure Reports

Online
ISSN 1600-5368

Xue-Mei Li, Li-Ping Du, Ying Li and Shu-Sheng Zhang*

College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, 266042 Qingdao, Shandong,
People's Republic of China

Correspondence e-mail: shushzhang@126.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.044$
$w R$ factor $=0.113$
Data-to-parameter ratio $=13.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

2-(2-Nitrophenyl)-1H-benzimidazole

In the title compound, $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{2}$, the dihedral angle between the benzimidazole moiety and the benzene ring is $40.08(6)^{\circ}$. The molecules are linked into chains along the b axis by intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds. The chains are interlinked into a two-dimensional network by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Comment

We have reported the synthesis and crystal structure of 6-methoxycarbonyl-2-methyl- 1 H -benzimidazol-3-ium nitrate hemihydrate (Ding et al., 2004). In our ongoing studies of benzimidazole derivatives, the title compound, (I), was obtained in the reaction of o-diaminobenzene and 2-nitrobenzoyl chloride.

(I)

The bond lengths and angles in (I) are within normal ranges (Allen et al., 1987) and comparable with those in the related compound N -methyl-2-(o-nitrophenyl)benzimidazole (Das et al., 2003). The benzimidazole moiety is essentially planar, with a dihedral angle of $1.7(1)^{\circ}$ between the planes of the benzene ring and its fused imidazole ring. The whole molecule is nonplanar; the benzimidazole ring makes an angle of 40.08 (6) ${ }^{\circ}$ with the C8-C13 benzene ring. In the crystal structure, the molecules of (I) are linked into chains along the b axis by $\mathrm{N} 1-$ $\mathrm{H} 1 \mathrm{~N} \cdots \mathrm{~N} 2^{i}$ intermolecular hydrogen bonds. The chains are interlinked into a two-dimensional network by $\mathrm{C} 12-$ $\mathrm{H} 12 \cdots \mathrm{O} 1^{\mathrm{ii}}$ hydrogen bonds (Fig. 2; symmetry codes as in Table 2). The packing is further stabilized by van der Waals forces.

Experimental

Compound (I) was synthesized according to the method of Fekner et al. (2004). A solution of 2-nitrobenzoyl chloride ($3.71 \mathrm{~g}, 20 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{ml})$ was added dropwise over 2 h to a solution of o-diaminobenzene ($2.16 \mathrm{~g}, 20 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(3.6 \mathrm{ml})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(20 \mathrm{ml})$. After the addition was complete, the reaction mixture was stirred at 273 K for 1 h and at room temperature for 3 h . The volatiles were removed in vacuo to give an off-white solid. The solid was refluxed in glacial $\mathrm{AcOH}(50 \mathrm{ml})$ in the presence of $\mathrm{AcONa}(1.64 \mathrm{~g}$,

Figure 1
The structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme.

20 mmol) for 15 h . The resulting brown oil was partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and water. The organic extracts were evaporated in vacuo to give a yellow solid. Single crystals of (I) were obtained from a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution over a period of 2 d .

Crystal data

$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{2}$
$M_{r}=239.23$
Orthorhombic, Pbca
$a=7.806$ (2) A
$b=9.901$ (3) \AA
$c=29.307$ (8) \AA
$V=2265.1(11) \AA^{3}$
$Z=8$
$D_{x}=1.403 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Siemens SMART 1000 CCD area-
detector diffractometer
ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.959, T_{\text {max }}=0.988$
11735 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044$
$w R\left(F^{2}\right)=0.113$
$S=1.06$
2256 reflections
163 parameters
H -atom parameters constrained

Table 1
Selected interatomic distances (\AA) .

$\mathrm{N} 1-\mathrm{C} 7$	$1.3509(19)$	$\mathrm{N} 2-\mathrm{C} 6$	$1.388(2)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.3713(19)$	$\mathrm{N} 3-\mathrm{C} 13$	$1.469(2)$
$\mathrm{N} 2-\mathrm{C} 7$	$1.3236(19)$		

Figure 2
Part of the two-dimensional network in (I), viewed down the a axis. Hydrogen bonds are indicated by dashed lines.

Table 2
Hydrogen-bond geometry ($\AA^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \mathrm{~N} \cdots \mathrm{~N}^{\mathrm{i}}$	0.86	1.99	$2.823(2)$	163
$\mathrm{C} 12-\mathrm{H} 12 \cdots 1^{\mathrm{ii}}$	0.93	2.54	$3.285(3)$	137

Symmetry codes: (i) $-x+\frac{1}{2}, y-\frac{1}{2}, z$; (ii) $x+\frac{1}{2},-y+\frac{3}{2},-z$.
After their location in a difference Fourier map, all H atoms were positioned geometrically ($\mathrm{N}-\mathrm{H}=0.86 \AA$ and $\mathrm{C}-\mathrm{H}=0.93 \AA$) and refined as riding, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}($ parent atom).

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

This project was supported by the Programme for New Century Excellent Talents in Universities (grant No. NCET-04-0649) and the Project of Educational Administration of Shandong Province (grant No. J04B12).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Das, T. M., Rao, C. P., Kalle, N. \& Rissanen, K. (2003). Indian J. Chem. Sect. B, 42, 661-665.
Ding, C. F., Zhang, S. S., Li, X. M., Xu, H. \& Ouyang, P. K. (2004). Acta Cryst. E60, o2441-o2443.
Fekner, T., Gallucci, J. \& Chan, M. K. (2004). J. Am. Chem. Soc. 126, 223-236.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

